Santa Fe Paired Basin Study

Southwest Fire Consortium 2011 Amy C. Lewis Consultant to the New Mexico Interstate Stream Commission

McClure Reservoir

Treated Basin Stream 9

Control Basin Stream Lower Rain

Cosmic Ray Control

Cosmic Ray Treated

0

00

Middle Rain

STATELING GANTA EE PANEL PROMINICAN

Explanation

CS Watershed Monitoring station O Precipitation Surface water 0

Cosmic ray probe

Treated Basin

Control Basin

Upper Rain

ATALKES TO

Specific Questions

- Will the total surface runoff volume change following thinning?
- Will the rate and timing of surface runoff change?
- Will the total amount of groundwater recharge change following thinning?
- Will the amount of moisture available to vegetation change following thinning?

Changes in Vegetation in Paired Basins

Project Approach

Monitor/estimate water budget components in treated and untreated basins

Water in: Precipitation (P) Water out: Runoff (RO) + Evaporation (E) + Transpiration (T) + Recharge (R)

Change in Storage: $\Delta S = P - RO - E - T - R$

Water Budget Components

 Precipitation (P) (including snow) measurement at 3 stations

Water Budget Components (cont)

Stream flow

 (RO) measurement Parshall
 flumes
 equipped with
 pressure
 transducers

Water Budget Components (cont.)

howpack and shallow soil noisture content (ΔS) through lirect measurements provided by Darin Desilets SNL (cosmic ay technology)

Water Budget Components (cont.)

 Evapotranspiration (ET) estimated by comparison of chloride in precipitation and stream flow (assuming no loss of chloride to recharge)

Recharge (R) –estimate by chloride mass balance and quantified as the balance of the water budget components Recharge

 $R = P - RO - E - T - \Delta S$

Summary of Annual Yield (ac-ft) and Precipitation (inches)

Average Daily Stream Flow in Treated and Control Basins update

Stream flow and Chloride in Treated Basin

Stream flow and Chloride in Control Basin

Chloride Concentrations in Streams and Precipitation

Soil Moisture

Measured by Darin Desilets, Sandia National Lab

Evapotranspiration

	Water Year 2009		Water Year 2010	
	Treated	Control	Treated	Control
Area (acres)	439	394	439	394
Precipitation (in)	18.65	18.65	19.99	19.99
Win (ac-ft)	682	612	731	656
Weighted Cl in	Ϋ́			
precipt (mg/L)	0.28	0.28	0.21	0.21
Weighted CI in				
stream flow (mg/L)	2.71	1.09	2.18	0.99
ET = (Cls-Clp)/Cls	90%	75%	91%	79%
ET (ac-ft)	613	457	662	519

Water Budgets

